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Abstract
We study the density of the roots of the derivative of the characteristic
polynomial Z(U, z) of an N × N random unitary matrix with distribution
given by Haar measure on the unitary group. Based on previous random matrix
theory models of the Riemann zeta function ζ(s), this is expected to be an
accurate description for the horizontal distribution of the zeros of ζ ′(s) to the
right of the critical line. We show that as N → ∞ the fraction of the roots of
Z′(U, z) that lie in the region 1−x/(N −1) � |z| < 1 tends to a limit function.
We derive asymptotic expressions for this function in the limits x → ∞ and
x → 0 and compare them with numerical experiments.

PACS numbers: 02.10.Yn, 02.10.De

1. Introduction

We study the density of the roots of

Z′(U, z) = d

dz
det(Iz − U) = d

dz

N∏
j=1

(z − eiθj ) z ∈ C

where U is a random N × N unitary matrix, with respect to the circular unitary ensemble
(CUE) of random matrix theory (RMT). Our main motivation is to investigate the horizontal
distribution of the zeros of the derivative of the Riemann zeta function.

The zeta function is defined by

ζ(s) =
∞∑

n=1

1

ns
σ = Re(s) > 1

and has an analytic continuation in the rest of the complex plane except for a simple pole at
s = 1. There are infinitely many non-trivial solutions to the equation ζ(s) = 0 in the strip
0 < σ < 1; the Riemann hypothesis (RH) states that they all lie on the critical line σ = 1/2.
The interest in the horizontal distribution of the zeros of ζ ′(s) is motivated by its connection
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with RH. In 1934 Speiser [1] showed that RH is equivalent to ζ ′(s) having no zeros in the
region 0 < σ < 1/2. Furthermore, up to now the most efficient ways of computing the
fraction of the zeros of the Riemann zeta function on the critical line are based on what is
known as Levinson’s method [2]; it turns out that the zeros of ζ ′(s) close to the critical line
have a significant effect on the efficiency of this technique [3], therefore it is important to know
how they are distributed. Levinson and Montgomery [4] proved a quantitative refinement of
Speiser’s theorem, namely that ζ(s) and ζ ′(s) have essentially the same number of zeros to
the left of σ = 1/2, and showed that as T → ∞, where T is the height on the critical line, a
positive proportion of the zeros of ζ ′(s) are in the region

σ <
1

2
+ (1 + ε)

log log T

log T
ε > 0.

Subsequent improvements of Levinson and Montgomery’s results, first by Conrey and Ghosh
[3], then by Guo [5], Soundararajan [6] and recently by Zhang [7] have established that a
typical zero of ζ ′(s) tends to be much closer to the critical line and that conditionally on RH
a positive proportion lie in the region

σ <
1

2
+

C

log T

for some positive constant C. Their distribution, however, is still unknown. Other results on
the zeros of ζ ′(s) can be found in [8].

Over the past thirty years, overwhelming evidence has been accumulated which suggests
that the local correlations of the non-trivial zeros of ζ(s) coincide, as T → ∞, with those of
the eigenvalues of Hermitian matrices of large dimensions from the Gaussian unitary ensemble
(GUE) [9]. As N → ∞, the GUE statistics are in turn the same as those of the phases of the
eigenvalues of N × N unitary matrices, on the scale of their mean distance 2π/N , averaged
over the CUE ensemble. More recently, however, it was realized that RMT not only describes
with high accuracy the distribution of the Riemann zeros, but also provides techniques to
make predictions and computations about the Riemann zeta function and certain classes of
L-functions that previous methods had not been able to tackle. This started with the work
of Keating and Snaith [10] on moments of the Riemann zeta function and other L-functions.
Their key observation was that the locally determined statistical properties of ζ(s) high up the
critical line can be modelled by characteristic polynomials Z(U, z) of random unitary matrices
U. In this model the two asymptotic parameters, T for ζ(s) and N for U, are compared by
setting the densities of the zeros of ζ(s) and of the eigenvalues of U equal, i.e.

N = log
T

2π
.

This approach has since been extremely successful [11].
Following the same ideas, in this paper we suggest that the density ρ(z) of the roots of

Z′(U, z) will accurately describe the distribution of the zeros of ζ ′(s). A classical theorem in
complex analysis states that if p(z) is a polynomial, then the roots of p′(z) that are not roots
of p(z) lie all in the interior or on the boundary of the smallest convex polygon containing
the zeros of p(z) (see, e.g., [12]). Therefore, since the eigenvalues of a unitary matrix have
modulus one, the solutions of the equation Z′(U, z) = 0 that are not zeros of Z(U, z) are all
inside the unit circle. If s = 1/2 + it + u, t ∈ R, denotes the point at which ζ ′(s) is evaluated,
then the region of C to the right of the critical line is mapped inside the unit circle by the
conformal mapping z = e−u. Thus, the radial density∫ 2π

0
|z|ρ(z) dφ
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becomes the analogue of the horizontal distribution of the zeros of ζ ′(s) to the right of the
line σ = 1/2. However, instead of ρ(z), it turns out to be more convenient to consider Ip(x),
the fraction of the roots in the annulus 1 − x/(N − 1) � |z| < 1, where x is the scaled
distance from the unit circle. Our main results concern the asymptotics of Ip(x). We show
that as N increases the roots of Z′(U, z) approach the unit circle, and Ip(x) tends to a function
independent of N. Furthermore, we obtain the following asymptotics as N → ∞:

Ip(x) ∼ 1 − 1/x x → ∞ x = o(N)

Ip(x) = 8

9π
x3/2 − 64

225π
x5/2 +

128

2205π
x7/2 + O(x4).

These formulae are then tested numerically.
The paper is organized as follows: in section 2 we introduce the mathematical problem

and describe the main properties of the roots of Z′(U, z); in section 3 the asymptotics of Ip(x)

as x → ∞ are computed; using heuristic arguments, in section 4, Ip(x) is derived in the limit
x → 0; section 5 concludes the paper with final remarks.

2. The distribution of the roots of Z ′(U , z)

The CUE ensemble of RMT is defined as the space U(N) of N ×N unitary matrices endowed
with a probability measure dµ(U) invariant under any inner automorphism

U �→ V UW U,V,W ∈ U(N).

In other words, dµ(U) must be invariant under left and right multiplication by elements of
U(N), so that each matrix in the ensemble is equally weighted. There exists a unique measure
on the unitary group U(N) with this property, known as Haar measure. The infinitesimal
volume element of the CUE ensemble occupied by those matrices whose eigenvalues have
phases lying between θ = (θ1, θ2, . . . , θN) and θ + dNθ is given by

�(N)	2(θ) dNθ (2.1)

where

	(θ) =
∏

1�j<k�N

|eiθj − eiθk | and �(N) = 1

(2π)NN!
.

Our goal in this paper is to study the density of the roots of Z′(U, z), where U is a random
unitary matrix with distribution given by (2.1). The analogous problem for the Ginibre
ensemble has been studied by Dennis and Hannay [13].

In figure 1 are plotted the zeros of the characteristic polynomials Z(U, z) and their
derivatives of two unitary matrices taken at random with respect to Haar measure for N = 20
and N = 50. Such matrices can be easily generated numerically by taking complex matrices
whose entries are independent complex random numbers with Gaussian distribution, and then
by applying Gram–Schmidt orthogonalization to the rows or columns (see, e.g., [14]). There
are a few qualitative features that can be immediately observed. Firstly, since the distribution
(2.1) is translation invariant on the unit circle, the density of the roots of Z′(U, z) depends
only on the distance from the origin. Secondly, as mentioned in the introduction, the roots
of Z′(U, z) are all inside the unit circle. This property can be easily understood from the
following argument. Let z1, z2, . . . , zN be N complex numbers; if they all are on the same
side of a straight line passing through the origin, then

z1 + z2 + · · · + zN �= 0 and
1

z1
+

1

z2
+ · · · +

1

zN

�= 0. (2.2)
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Figure 1. Zeros of characteristic polynomials of random unitary matrices (�) and of their
derivatives (�).
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Let {zj }Nj=1 be the roots of a polynomial p(z) and z a point outside the smallest convex polygon
containing {zj }Nj=1. Now, consider a straight line passing through z and lying outside such a
polygon. Because of equation (2.2), the logarithmic derivative

p′(z)
p(z)

= 1

z − z1
+

1

z − z2
+ · · · +

1

z − zN

cannot vanish. There are two other less obvious features that figure 1 reveals and that become
more apparent as N increases: firstly, the roots of Z′(U, z) concentrate in a small region in
proximity of the unit circle; secondly, given two consecutive zeros of Z(U, z), say eiθj and
eiθj+1 , close to each other, there often appears to be a root of Z′(U, z) near the midpoint

eiθj + eiθj+1

2
. (2.3)

In the following sections we give quantitative interpretations of these properties.
Let us set u = Re z and v = Im z; furthermore, denote by {λj (θ)}N−1

j=1 the set of roots of
Z′(U, z) and consider the linear functional

F [τ ]λj (θ) =
∫

C

τ (z)δ(z − λj (θ)) d2z = τ (λj (θ))

where d2z = du dv and τ (z) is an infinitely differentiable complex function whose partial
derivatives with respect to u and v decrease faster than any power of 1/|z|. Moreover,

δ(z − λj (θ)) = δ(u − Re(λj (θ)))δ(v − Im (λj (θ)))

is the product of two Dirac delta functions with real arguments. Then, we have∫
C

τ (z)ρ(z) d2z = �(N)

N − 1

N−1∑
j=1

∫
[0,2π ]N

∫
C

τ (z)δ(z − λj (θ))	2(θ) d2z dNθ

where the distribution

ρ(z) := �(N)

N − 1

N−1∑
j=1

∫
[0,2π ]N

δ(z − λj (θ))	2(θ) dNθ (2.4)

defines the density of {λj (θ)}N−1
j=1 .

The main tool that we shall use to evaluate (2.4) is a basic identity that expresses Toeplitz
determinants in terms of integrals over the unitary group. If

f (θ) =
∞∑

k=−∞
f̂ k eikθ

is a complex function on the unit circle, then we denote by DN−1[f ] the determinant of the
Toeplitz matrix

TN−1[f ] :=




f̂ 0 f̂ 1 · · · f̂ N−1

f̂ −1 f̂ 0 · · · f̂ N−2
...

...
...

f̂ −(N−1) f̂ −(N−2) · · · f̂ 0


 .

Now, let f be a class function, i.e. a complex function on U(N) such that

f (V UV −1) = f (U) V,U ∈ U(N).

Furthermore, suppose that

f (U) = f (θ1)f (θ2) · · · f (θN) (2.5)
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where {eiθj }Nj=1 are the eigenvalues of U. The Heine–Szeg ′′o identity [15] states that

DN−1[f ] =
∫

U(N)

f (U) dµ(U)

= �(N)

∫
[0,2π ]N


 N∏

j=1

f (θj )


	2(θ) dNθ. (2.6)

In order to apply this formula, we must express the sum of delta functions in (2.4) as a
product of the form (2.5). The zeros of Z′(U, z) that are not multiple roots of Z(U, z) are the
same as those of the logarithmic derivative of Z(U, z). Since the set of unitary matrices with
degenerate eigenvalues has zero measure, we rewrite the integrand in equation (2.4) as

N−1∑
j=1

δ(z − λj ) = δ(Z′(U, z)/Z(U, z))

∣∣∣∣ d

dz
[Z′(U, z)/Z(U, z)]

∣∣∣∣
2

. (2.7)

In the next step we use the integral representation of a delta function:

δ(x) = 1

2π

∫ ∞

−∞
eiξx dξ.

The complex delta function on the right-hand side of equation (2.7) now becomes

δ(Z′(U, z)/Z(U, z)) = 1

4π2

∫
C

exp

[
i

2

(
Z′(U, z)

Z(U, z)
w +

Z′(U, z)

Z(U, z)
w

)]
d2w. (2.8)

Clearly, the identity (2.6) can be applied to the argument of the integral (2.8); furthermore, the
Jacobian in equation (2.7) can be transformed into a product of the form (2.5) by using the
following representation of the modulus square of a complex number:

|z|2 = − ∂2

∂α2
G(α, z)

∣∣∣∣
α=0

α ∈ R

where

G(z, α) := exp[iα(z + z)/2] + exp[α(z − z)/2].

Finally, the density (2.4) becomes

ρ(z) =− 1

4π2(N − 1)

∂2

∂α2

[∫
C

(DN−1[exp(ig)](w, α, z) + DN−1[exp(ih)](w, α, z)) d2w

]
α=0

(2.9)

where

g(θ; w,α, z) := 1

2

(
w

z − eiθ
+

w

z − e−iθ

)
− α

2

(
1

(z − eiθ )2
+

1

(z − e−iθ )2

)

and

h(θ; w,α, z) := 1

2

(
w

z − eiθ
+

w

z − e−iθ

)
+

iα

2

(
1

(z − eiθ )2
− 1

(z − e−iθ )2

)

are real functions.
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3. Asymptotics of ρ(z)

Computing (2.9) exactly appears to be a formidable task. However, there exists a powerful
theorem of Szeg ′′o that will allow us to compute the leading-order asymptotics of ρ(z) as
N → ∞.

The strong Szeg ′′o limit theorem. Let

η(θ) =
∞∑

k=−∞
η̂k eikθ

be a complex function on the unit circle. If the series
∞∑

k=−∞
|η̂k| and

∞∑
k=−∞

|k||η̂k|2 (3.1)

converge, then

DN−1[exp(η)] = exp

(
η̂0N +

∞∑
k=1

kη̂−kη̂k + o(1)

)
N → ∞. (3.2)

The first proof of this theorem was given by Szeg ′′o in [16] under stronger conditions; several
proofs have since been developed [17, 18].

In the region |z| < 1, g(θ; w,α, z) and h(θ; w,α, z) are just sums of geometric series
and of their derivatives whose Fourier coefficients can be easily computed. We have

g(θ; w,α, z) =
∞∑

k=−∞
ĝk eikθ and h(θ; w,α, z) =

∞∑
k=−∞

ĥk eikθ

where

ĝ0 = 0 ĝk = −w

2
z k−1 − α

2
(k − 1)z k−2 k ∈ Z

+

and

ĥ0 = 0 ĥk = −w

2
z k−1 − iα

2
(k − 1)z k−2 k ∈ Z

+.

Since g(θ; w,α, z) and h(θ; w,α, z) are real, ĝ−k = ĝk and ĥ−k = ĥk. Computing the
argument in the exponential of equation (3.2) involves only summing and differentiating
geometric series. We obtain

E(g) =
∞∑

k=1

k|ĝk|2 = c(w, α, r) +
α Re (wz)

(1 − r2)3
(3.3a)

E(h) =
∞∑

k=1

k|ĥk|2 = c(w, α, r) +
α Im (wz)

(1 − r2)3
(3.3b)

where r = |z| and

c(w, α, r) = |w|2
4

1

(1 − r2)2
+

α2

2

[
3r2

(1 − r2)4
+

1

(1 − r2)3

]
.

As a consequence, the second sum in (3.1) is finite. Furthermore, we have

lim
k→∞

∣∣∣∣ ĝk+1

ĝk

∣∣∣∣ = lim
k→∞

∣∣∣∣∣ ĥk+1

ĥk

∣∣∣∣∣ = r < 1.

Hence, the first series in (3.1) converges too, and the strong Szeg ′′o limit theorem applies.
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When computing derivatives of the asymptotics of the integral (2.9), care must be taken
so that the error term does not become comparable or even greater than the leading-order term.
This could happen, for example, if the remainder were a highly oscillatory function of α. It
turns out that the convergence of DN−1[exp(ig)] and DN−1[exp(ih)] to (3.2) is so fast that the
derivatives of the error term remain small. This is proved in the appendix.

In equation (2.9) the second derivative commutes with the integral, hence differentiating
twice with respect to α gives

∂2

∂α2

[
DN−1[exp(ig)](w, α, z) + DN−1[exp(ih)](w, α, z)

]
α=0

∼
[ |w|2r2

(1 − r2)6
− 6r2

(1 − r2)4
− 2

(1 − r2)3

]
exp

[
− |w|2

4(1 − r2)2

]
N → ∞.

This expression can be trivially integrated. Finally, we obtain

ρ(z) ∼ 2

π(N − 1)(1 − r2)2
N → ∞.

As anticipated, ρ(z) depends only on the distance from the origin r and is asymptotically
concentrated in a small region near the unit circle, which explains the migration of the roots
of Z′(U, λ) observed in figure 1 as N increases. Since ρ(z) is a density, it must be normalized
to one, therefore we require∫ 2π

0

∫ 1−ε

0
rρ(z) dr dφ ∼ 1 N → ∞ ε → 0.

Let us now define Ip(x) to be the fraction of the zeros in the annulus 1−x/(N−1) � r < 1,
where x = o(N), i.e.

Ip(x) = 1 −
∫ 2π

0

∫ 1−x/(N−1)

0
rρ(z) dr dφ ∼ 1 − 2

N − 1

[
1

1 − r2

]1−x/(N−1)

0

∼ 1 − 1/x

N → ∞ x → ∞. (3.4)

As N → ∞ the leading-order term of Ip(x) is independent of N. Equation (3.4) is the main
result of this section. In figure 2, formula (3.4) is compared with Ip(x) computed for a matrix
of dimension N = 800.

4. The asymptotics x → 0

The small x asymptotics of Ip(x) requires first the evaluation of the limit x → 0 and then
of the limit N → ∞. Szeg ′′o’s theorem gives an asymptotic expression as N → ∞ before
the limit x → 0 can be taken, and therefore provides information only for relatively large x.
In order to determine Ip(x) in the limit x → 0, the integral in equation (2.9) needs to be
evaluated for finite N. Such computation seems to be an extremely difficult task: the integrand
has essential singularities that usual techniques in RMT and complex analysis cannot tackle.
Notwithstanding such obstacles, it turns out that Ip(x) can be derived in the limit x → 0 with
the help of a heuristic argument.

As was mentioned in section 2, from figure 1 it appears that if eiθj and eiθj+1 are two
consecutive roots of Z(U, z) which are close to each other, then as N → ∞ there is often a
root of Z′(U, z) near the midpoint (2.3). Thus, one might assume that for small x the distance
from the origin r is distributed like

1 − x/(N − 1) =
∣∣∣∣eiθj + eiθj+1

2

∣∣∣∣ =
√

2 + 2 cos(2πS/N)

2
≈ 1 − π2S2

2N2
1 � j � N

(4.1)
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Figure 2. Comparison (a) and difference (b) between Ip(x) computed numerically for N = 800
(♦) and formula (3.4) (——).

where S is the rescaled distance, or spacing, between phases of consecutive eigenvalues, i.e.

S = N

2π
|θj+1 − θj | 1 � j � N.

This is trivially true only for N = 2; since S = O(1), for N > 2 equation (4.1) would imply
an average distance of the zeros of Z′(U, z) from the unit circle of order 1/N2, and therefore
a dependence of Ip(x) on N even at the leading order, which contradicts the numerics reported
in figure 5 and formula (3.4).

It turns out that behaviour of Ip(x) as x → 0 can be understood using Dyson’s electrostatic
model for the CUE ensemble (see, e.g., [19]). The zeros of Z(U, z) can be interpreted as N
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d

A
B

q

Figure 3. Schematic representation of the two components Eµ(q) and EAB(q) of the electric field
(4.2) at a point q close to the unit circle in Dyson’s electrostatic model.

unit charges confined in a two-dimensional universe and moving in a thin circular conducting
wire of radius one. The electric field generated at any point in the complex plane by this
Coulomb gas is just the complex conjugate of the logarithmic derivative of Z(U, z), i.e.

E(z) = 1

z − e−iθ1
+

1

z − e−iθ2
+ · · · +

1

z − e−iθN
.

Hence, the zeros of Z′(U, z) are located where E(z) vanishes. Now, the field at point q, whose
distance from the unit circle is of order 1/N , can be separated into two components: the first
one is the field of the two charges closest to q, let us denote them by A and B, whose strength
is clearly of order N; the second one is the field generated by the other N − 2 charges. As N
increases, q approaches the unit circle, and the latter component of E(q) can be approximated
by the field of a continuous circular charge distribution with density µ = N/(2π), i.e.

E(q) ≈ Eµ(q) + EAB(q) (4.2)

where Eµ(q) is the field generated by µ and EAB(q) the one determined by A and B. For large
N, Eµ(q) and EAB(q) have approximately opposite directions, thus E(z) might vanish at q
only if |Eµ(q)| = O(N). This situation is described schematically in figure 3. Determining
the order of magnitude of Eµ(q) is a simple exercise in electrostatics. If the continuous charge
distribution filled the whole unit circle, the field inside it would be zero. Thus, by linearity
Eµ(q) is equal and opposite to the field of a circular arc [−θ̃ , θ̃ ] with charge density µ and
containing no more than four eigenvalues. We have

|Eµ(q)| = N

2π

∫ θ̃

−θ̃

1

d(θ)

√
1 − sin2 θ

d(θ)2
dθ

where d(θ) is the distance between q and eiθ . By setting d(θ) = t (θ)/N , with t (θ) = O(1),
and applying the mean value theorem we obtain

|Eµ(q)| = θ̃N2

πt(ξ)

√
1 − sin2 ξ

d(ξ)2
− θ̃ � ξ � θ̃ .
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Since the length of the interval [−θ̃ , θ̃ ] is of the order of few level spacings, θ̃ = O(1/N) and
|Eµ(q)| = O(N).

The field EAB(z) vanishes at the midpoint (2.3), but for large N the presence of Eµ(z) shifts
the zeros of E(z) at a distance of order 1/N from the unit circle. Since at first approximation the
contribution of Eµ(z) does not depend on the spacing S, from (4.1) it is reasonable to assume
that as x → 0 the distance of the zeros of Z′(U, z) from the unit circle is approximately
distributed like S2/N . Hence, we shall conjecture that

x ∼ β
π2S2

2
x → 0 (4.3)

where β is a constant independent of N.
From equation (4.3) it is straightforward to derive an asymptotics expression for Ip(x) as

x → 0. We have

Ip(x) ∼
∫ x

0
γ (y) dy x → 0

where

γ (y) := 1

π

√
1

2βy
PCUE

[
1

π

(
2y

β

)1/2
]

and PCUE(S) is the CUE spacing distribution in the limit N → ∞, i.e.

PCUE(S) := lim
N→∞

PCUE(N; S).

PCUE(S) has a power series expansion with infinite radius of convergence:

PCUE(S) =
∞∑
l=0

(l + 4)(l + 3)ElS
2+l . (4.4)

There exist efficient algorithms for computing the coefficients El (see, e.g., [20]), which with
symbolic mathematical packages can be evaluated exactly up to very high values of l. Using
(4.4) one can easily obtain a series expansion for Ip(x):

Ip(x) ∼
∞∑
l=0

(
2

βπ2

) l+3
2

(l + 4) Elx
l+3
2 x → 0. (4.5)

Now we have to determine the parameter β, which can be found only empirically. It turns out
that if we set β = 1/2 there exists an astonishing agreement between (4.5) and numerics in
the region where the large x asymptotics is not valid. This is shown in figure 4.

Notwithstanding the accuracy with which the series (4.5) models the numerical data, it can
be expected to approximate Ip(x) only for small x; indeed, it tends to the one much faster than
1−1/x. Furthermore, in deriving (4.5) we have implicitly assumed that the main contribution
to Ip(x) comes only from the two zeros of Z(U, z) closest to a given root of Z′(U, z); we now
need to estimate in what region this assumption is justified.

Let us consider k + 2 successive eigenvalues of a unitary matrix. Since Haar measure
is translation invariant on the unit circle, the corrections to (4.5) will depend on all possible
rescaled distances

Sk = N

2π
|θj+k+1 − θj | 1 � j � N.

However, as Sk → 0, the limit densities PCUE(Sk) go to zero very fast, hence the dependence
on Sk does not affect the first few terms of the series (4.5). For example, consider three
consecutive zeros of Z(U, z) close to each other, say

exp

(
2π i

N
α

)
exp

(
2π i

N
(α + S0)

)
and exp

(
2π i

N
(α + S1)

)
S1 � S0 � 0.
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Figure 4. Comparison (a) and difference (b) between Ip(x) computed numerically for N = 800
(♦) and the one defined by the series (4.5) truncated at l = 30 and with β = 1/2 (——).

Simple algebra and Dyson’s model indicate that the rescaled distance x should be distributed
like

β ′(S0 + S1)
2

for some constant β ′ independent of N. It turns out that

PCUE(S1) = π6S7
1

4050
+ O

(
S8

1

)
(4.6)

which suggests that the contributions to (4.5) due to S1 leave the coefficients of the terms
xd with d < 4 unchanged. For k > 1, PCUE(Sk) goes to zero as Sk → 0 even faster
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Figure 5. (a) Fraction of zeros of Z′(U, z) in the region 1 − x/(N − 1) � |z| < 1 for N = 800
(♦), N = 500 (◦) and N = 400 (�). (b) Same data as in (a) for N = 800 (♦) compared with
formula (3.4) (——) and with the series (4.5) truncated at l = 30 and with β = 1/2 (- - - -).

than (4.6). These considerations and formula (4.5) give the following expression for the
asymptotic expansion of Ip(x):

Ip(x) = 8

9π
x3/2 − 64

225π
x5/2 +

128

2205π
x7/2 + O(x4).

However, from the agreement with numerics observed in figures 4 and 5(b), we would expect
that the corrections to the series (4.5) should be negligible up to terms of order much higher
than x4.
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The integrated distribution Ip(x) is plotted in figure 5(a) for zeros of Z′(U, z) computed
numerically for random unitary matrices of various dimensions; clearly, Ip(x) tends to a
limit function. Figure 5(b) shows that equation (3.4) and the series (4.5) together, although
asymptotic formulae, approximate Ip(x) with high accuracy for all x � 0.

5. Concluding remarks

We have investigated the density ρ(z) of the roots of Z′(U, z), where Z(U, z) is the
characteristic polynomial of a random N × N unitary matrix with distribution given by
Haar measure on the unitary group. Since the locally determined statistical properties of the
Riemann zeta function high up the critical line can be modelled by Z(U, z), it is expected
that ρ(z) will accurately describe the behaviour of the zeros of ζ ′(s). It turns out that
instead of ρ(z), it is more convenient to study Ip(x), the fraction of the roots in the region
1 − x/(N − 1) � |z| < 1. In the analogous problem for the zeta function, this is equivalent
to looking at the fraction of the zeros of ζ ′(s) in the region 1/2 < σ � 1/2 + x/ log T where
σ = Re (s) and T is the height on the critical line. It is shown that as N → ∞, Ip(x) becomes
independent of N.

The density ρ(z) can be defined as the average over U(N) of the sum of delta functions

1

N − 1

N−1∑
j=1

δ(z − λj (θ))

where the λj (θ) are the zeros of Z′(U, z). The behaviour of Ip(x) for large x can be computed
by applying standard techniques for integrals over U(N). The sum of Dirac deltas can be
manipulated in such a way that eventually the average over U(N) is reduced to the computation
of the second derivative of an integral over the complex plane of the sum of two Toeplitz
determinants. Furthermore, the integrand satisfies the hypothesis of the strong Szeg ′′o limit
theorem, which gives a simple asympotic expression for such determinants. Further simple
manipulations lead to

Ip(x) ∼ 1 − 1/x x = o(N) x → ∞.

The limits x → 0 and N → ∞ do not commute; the evaluation of the asymptotics
of Ip(x) as x → 0 requires first the computation of the limit x → 0 and then of the limit
N → ∞. The application of Szeg ′′o’s theorem clearly prevents this, and therefore provides
information only for relatively large x. However, Dyson’s electrostatic model for the CUE
ensemble leads naturally to the assumptions that for small x, as N → ∞, the distance of the
roots of Z′(U, z) from the unit circle is on average of order 1/N and is distributed like
the square of the spacings between phases of consecutive eigenvalues of unitary matrices in
the CUE ensemble (appropriately rescaled). These two simple hypotheses give a conjecture
for Ip(x) as x → 0 whose agreement with numerical experiments covers with high accuracy
the region where the large x asymptotics fails.

Unfortunately, the zeros of ζ ′(s) are poorly understood, and there is not even a conjecture
for their horizontal distribution to compare with the results derived in this paper. Given that it
seems extremely difficult to obtain an analytical expression of such a quantity, we believe that
it would be interesting and worthwhile to conduct a thorough numerical study as independent
verification of the model presented here.
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Appendix. Derivatives of Szeg ′′o’s strong asymptotic formula

In this appendix we show that in the cases considered in the present paper, the error term in
formula (3.2) remains small when differentiated with respect to α; in other words, we prove
that

∂2

∂α2
[DN−1[exp(ig)](α) + DN−1[exp(ih)](α)]α=0

∼ ∂2

∂α2
[exp(−E(g)) + exp(−E(h))]α=0 N → ∞ (A1)

where E(g) and E(h) are defined in equations (3.3)1. The main idea of the proof is quite
simple: we first represent the Toeplitz determinants with exact formulae and differentiate them
with respect to α; then we take the limit N → ∞. We shall consider only DN−1[exp(ig)], as
the proof for DN−1[exp(ih)] is completely analogous.

The identity (2.6) allows us to write

DN−1[exp(ig)](α) =
∫

U(N)

exp

(
i

∞∑
k=−∞

ĝk(α) Tr(Uk)

)
dµ(U).

Replacing the exponential function by its power series gives∫
U(N)

∞∏
k=1

∞∑
ak=0

(iĝk(α) Tr(Uk))ak

ak!

∞∑
bk=0

(−iĝk(α) Tr(Uk))bk

bk!
dµ(U).

Integrals over U(N) of product of traces of unitary matrices have been computed by Diaconis
and Shahshahani [21]. Let λj be non-negative integers such that

λ1 � λ2 � . . . � λs

and

L = λ1 + λ2 + · · · + λs = 1a1 + 2a2 + · · · + rar

where ak denotes the number of times the integer k appears among the λj s. We call
λa = (λ1, λ2, . . . , λs) a partition of L. Consider the integral

I (λa, λb) =
∫

U(N)

r∏
k=1

(Tr(Uk))ak (Tr(Uk))bk dµ(U).

It turns out that I (λa, λb) = 0 unless λa = λb; furthermore, we have (see, e.g., [18]){
I (λa, λb) = δλaλb

∏r
k=1 kakak! if L � N

I(λa, λb) � δλaλb

∏r
k=1 kakak! if L > N.

(A2)

1 To simplify the notation and emphasize the dependence on α, we omit the variables w and z in this appendix.
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Therefore, we obtain

DN−1[exp(ig)](α) =
∑
λa

I (λa, λa)
∏
k

(−1)ak
|ĝk(α)|2ak

(ak!)2
(A3)

where the sum is over all partitions and the product over all the integers (without multiplicity)
of a given partition. Because of equation (A2), asymptotically formula (A3) tends to

∑
λa

∏
k

(−1)ak
kak |ĝk(α)|2ak

ak!
=

∞∏
k=1

∞∑
ak=0

(−1)ak
kak |ĝk(α)|2ak

ak!
= exp

(
−

∞∑
k=1

k|ĝk(α)|2
)

.

This proof of the strong Szeg ′′o limit theorem was derived by Bump and Diaconis [18].
In order to prove (A1) we need to take the second derivative with respect to α of (A3)

and then the limit N → ∞. Differentiating the right-hand side of equation (A3) is tedious
but elementary. We shall carry out only the first derivative, since the second one is completely
analogous. We have

∂DN−1[exp(ig)](α)

∂α
=

∑
λa

I (λa, λa)
∑

k

(−1)ak
∂|ĝk(α)|2

∂α

|ĝk(α)|2(ak−1)

(ak − 1)!ak!

∏
j �=k

(−1)aj
|ĝk(α)|2aj

(aj !)2
.

(A4)

In the limit N → ∞ the right-hand side of (A4) becomes

−
∞∑

k=1

k
∂|ĝk(α)|2

∂α
exp

(
−

∞∑
k=1

k|ĝk(α)|2
)

= −∂E(g)

∂α
exp(−E(g))

which is the same expression obtained by differentiating Szeg ′′o’s strong asymptotic formula.
Similarly, differentiating (A4) and then taking the limit N → ∞ gives

∂2DN−1[exp(ig)](α)

∂α2
∼

[(
∂E(g)

∂α

)2

− ∂2E(g)

∂α2

]
exp(−E(g)) N → ∞. (A5)

This completes the proof of (A1).
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